Технологии получения энергии будущего

Источники энергии будущего

Несмотря на серьезные инвестиции в развитие альтернативных источников энергии, сейчас они удовлетворяют менее 1% глобальных нужд человечества в электричестве. Но этот показатель с каждым годом стабильно растет.

В 1872 году русский изобретатель Александр Лодыгин создал электрическую лампочку накаливания, но в те времена он не мог даже предположить, что со второй половины XX столетия электростанции привычных типов не смогут удовлетворять растущие потребности человечества без нанесения вреда окружающей среде. И дело даже не в освещении жилых помещений, ведь во многих странах галогеновые лампы уже стали стандартом, а на подходе еще более энергоэффективная технология — светодиоды. Главная причина быстро растущего уровня потребления электричества на планете заключается в возникновении абсолютно новых типов устройств, расходующих гигаватты электроэнергии. В первую очередь речь идет о дата-центрах и электромобилях.

Дата-центры — вычислительные технологии сегодняшнего дня — не только потребляют столько же электричества, сколько целый жилой микрорайон города, но и выделяют огромные объемы тепла. Кроме того, сложно представить, как высоко в самом ближайшем будущем поднимут уровень энергопотребления электрокары — очень перспективные, но пока непригодные для повсеместного применения разработки. Данные проблемы заставляют лучшие умы современности искать новые, экономически выгодные способы выработки электроэнергии, минимизирующие негативное влияние на биосферу. Многие технологии уже активно эксплуатируются на всех континентах. На основе других пока созданы только экспериментальные установки — их творцам еще предстоит доказать рациональность своих идей. Но, возможно, именно за самыми фантастическими методами — будущее нашей планеты.

Гелиоэнергетика подразумевает непосредственное использование солнечного излучения для получения энергии в каком-либо виде. Как и ветер, солнце является ее возобновляемым источником.

Получение электроэнергии из волн

Мощью волн восхищались еще древнегреческие поэты и философы. Современные специалисты более практичны: они применяют энергию волн не только для выработки электричества, но и опреснения воды в регионах с чрезмерно сухим климатом. В теории вода обладает намного большей кинетической энергией, чем воздух, что позволяет получать в разы больше электричества. Оборудование для строительства волновых электростанций проектируют Marine Current Turbine, Wavegen, Ocean Power Delivery и другие предприятия. Подобные решения идеальны для государств с большой протяженностью морского побережья и сильными порывами ветра. К примеру, волновая электростанция Oyster в Великобритании использует вырабатываемую электроэнергию для получения водорода и алюминия.

Водород является полностью безотходным источником электроэнергии, ведь в результате его горения помимо большого количества тепла выделяется только вода (Н2О) — естественное и совершенно безвредное для окружающей среды вещество. Ведущие автомобилестроительные концерны — Daimler, Honda, General Motors, Hyundai и Fiat — уже выпускают автомобили, двигатель внутреннего сгорания которых способен работать на водороде. Япония готовит к введению в эксплуатацию первый в мире поезд на водороде, а в Германии уже поставлены на конвейер подводные лодки класса U-212 с водородными топливными элементами Siemens. В США идет строительство электростанций на водороде FutureGen мощностью 275 МВт, Китай готовит свой ответ — электростанцию GreenGen со вдвое более высокой мощностью.

Оба проекта применяют технологию газификации угля, которая на данный момент является самой дешевой — $2 (16 гривен) за килограмм водорода. Сырьем для его получения также служит сероводород (H2S) — в глубинных водах морей и океанов его концентрация очень высока. Переработка сероводорода в водород не только позволит получить большие объемы топлива для транспортных средств и электростанций, но и предотвратит повышение концентрации этого ядовитого вещества в морских водах.

Все ранее описывавшиеся альтернативные источники электроэнергии давно прошли этап экспериментальных установок и реально функционируют, принося ощутимую пользу.

Чего нельзя сказать об этом варианте: он все еще балансирует на тонкой грани между произведениями классиков научной фантастики и новейшими технологиями.

Получение электроэнергии из биотоплива

Схема автомобиля, работающего на биогазе и обычном топливе Ошибочно называть биотопливом только продукты переработки стеблей и семян растений. На самом деле человек использует простейшее твердое биотопливо еще со времен зарождения цивилизации. Речь идет, конечно же, о дереве. Сейчас древесина расходуется все реже: это слишком ценный материал. На смену ей пришли брикеты из прессованных стружек. Но будущее все же не за твердым, а за жидким биотопливом.

Биоэтанол получают путем переработки рапса, кукурузы и сахарного тростника, биометанол — в результате брожения фитопланктона, биодизель — из животных и растительных жиров. Чаще всего биотопливо применяется как заменитель бензина, но во многих странах тепловые электростанции (ТЭС) перешли на него с мазута и угля. Биоэтанол, производство которого сконцентрировано в Бразилии и США, покрывает 1,5% глобальной потребности в жидком топливе. Эта цифра может показаться незначительной, но, по оценкам ведущих аналитиков, остановка выработки всех видов биотоплива приведет к 15-процентному росту стоимости барреля нефти. В 2010 году Европейский союз ввел унифицированную стандартизацию биотоплива — EN-PLUS.

Но и в случае с этим источником энергии не обошлось без негатива. Мировую общественность волнует проблема растущего потребления биотоплива, ведь поля с плодородной землей все чаще засеивают не продовольственными культурами (пшеницей, рожью или рисом), а рапсом.

Существует множество проектов по добыче экологически чистой электроэнергии, которые обладают большим потенциалом, но все еще находятся на стадии разработки. Одним из самых перспективных на сегодняшний день является получение биотоплива третьего поколения в результате переработки особого вида водорослей с высоким содержанием масла. По своим энергетическим характеристикам они значительно превосходят другое сырье. Такие водоросли не распространены широко в естественной среде, но очень быстро растут в искусственных водоемах. Однако основная технологическая трудность заключается в том, что водоросли очень чувствительны к изменениям температуры — она должна поддерживаться на определенном уровне с отсутствием даже минимальных колебаний.

Давней мечтой ученых является получение антивещества. Любое вещество состоит из частиц, а антивещество — из античастиц. Эти две субстанции полностью противоположны: в обычном веществе протоны в атоме имеют положительный заряд, а электроны — отрицательный, в антивеществе все наоборот — антипротоны с отрицательным зарядом и позитроны с положительным. Частицы антивещества и обычного вещества при контакте аннигилируют — исчезают, и при этом выделяется огромное количество энергии. Тонна антивещества могла бы покрыть годовую энергетическую потребность всей планеты.

Избыток вырабатываемой энергии в одно время и недостаток ее в другое свойственны всем без исключения непостоянным источникам — ветру, солнцу, волнам и т. п.

Теоретически у этой проблемы есть довольно простое решение — использовать аккумуляторы. Но на практике все намного сложнее, чем кажется на первый взгляд.

Необходимость применения батарей в разы увеличивает себестоимость мегаватта вырабатываемой электроэнергии.

На сегодняшний день широко распространены свинцово-кислотные, никель-металл-гидридные, литий-ионные и литий-полимерные аккумуляторы. Свинцово-кислотные, самые распространенные в мире, отличаются высокой ЭДС (электродвижущей силой) и широким диапазоном рабочих температур (от –40 до +40 °С). Именно они чаще всего применяются в качестве аварийных источников электроэнергии. Зато в пользу литий-ионных и литий-полимерных аккумуляторов говорят их миниатюрные размеры и простота в обслуживании. Но стоит отметить, что они подвержены эффекту старения, и продолжительность их жизненного цикла оставляет желать лучшего.

Несмотря на серьезные инвестиции в развитие альтернативных источников энергии, сейчас они удовлетворяют менее 1% глобальных нужд человечества в электричестве. Но этот показатель с каждым годом стабильно растет из-за быстро снижающейся себестоимости мегаватта электроэнергии, вырабатываемой подобными методами. На данный момент больше всего средств в развитие экологически чистой энергетики вкладывают Китай, США, Великобритания и Индия. К 2020 году глобальные инвестиции в возобновляемые источники энергии должны вырасти до 1,7 триллиона долларов.

Подписаться на новости

Все самое важное каждый день

СпецпредложенияИз Германии по разумной цене

Новое в блогах

Вы можете вступить в сообщество одним кликом по кнопке справа.

21 оценок, 1579 просмотров Обсудить (107)

Виктор Давыдов # ответил на комментарий Рыжий Лис 4 августа 2016, 09:57

Войдите или зарегистрируйтесь для того, чтобы Ваш комментарий стал видимым для всех.

Зарегистрировалось 74 новых макспаркеров. Теперь нас 4957871.

Энергетика будущего: реальность и фантазии. Альтернативные источники энергии

Ни для кого не секрет, что используемые сегодня человечеством ресурсы конечны, более того, их дальнейшая добыча и использование может привести не только к энергетической, но и к экологической катастрофе. Традиционно используемые человечеством ресурсы — уголь, газ и нефть — закончатся уже спустя несколько десятилетий, и меры нужно принимать уже сейчас, в наше время. Конечно, можно надеяться, что мы вновь найдем какое-либо богатое месторождение, так же как было в первой половине прошлого века, однако ученые уверены, что таких крупных залежей уже нет. Но в любом случае даже открытие новых месторождений только отсрочит неизбежное, необходимо найти способы производства альтернативной энергии, и переходить на возобновляемые ресурсы, такие как ветер, солнце, геотермальная энергия, энергия водных потоков и другие, а наряду с этим нужно продолжать разработки энергосберегающих технологий.

В этой статье мы рассмотрим несколько самых перспективных, на взгляд современных ученых, идей, на которых будет строиться энергетика будущего.

Люди издавна задумывались над тем, возможно ли использование энергии солнца на земле. Под солнечными лучами нагревали воду, сушили одежду и глиняную посуду перед ее отправкой в печь, однако эти способы нельзя назвать эффективными. Первые технические средства, преобразующие солнечную энергию, появились еще в 18 веке. Французский ученый Ж. Бюффон показал опыт, в котором ему удалось с помощью большого вогнутого зеркала в ясную погоду воспламенить сухое дерево с расстояния около 70 метров. Его соотечественник, известный ученый А. Лавуазье, применял линзы, чтобы концентрировать энергию солнца, а в Англии создали двояковыпуклое стекло, которое, фокусируя солнечные лучи, расплавляло чугун всего за несколько минут.

Естествоиспытатели проводили множество опытов, которые доказывали, что использование энергии солнца на земле возможно. Однако солнечная батарея, которая превращала бы солнечную энергию в механическую, появилась сравнительно недавно, в 1953 году. Ее создали ученые из Национального аэрокосмического агентства США. Уже в 1959 году солнечную батарею впервые применили для оснащения космического спутника.

Возможно уже тогда, осознав, что в космосе такие батареи гораздо эффективнее, ученым пришла идея о создании космических солнечных станций, ведь за час солнце вырабатывать столько энергии, сколько все человечество не потребляет и за год, так почему же не использовать это? Какой будет солнечная энергетика будущего?

С одной стороны кажется, что использование солнечной энергии идеальный вариант. Однако себестоимость огромной космической солнечной станции очень высока, да и к тому же она будет дорога в эксплуатации. Со временем, когда будут введены новые технологии по доставке грузов в космос, а также новые материалы, реализация подобного проекта станет возможной, но пока мы можем пользоваться только относительно небольшими батареями на поверхности планеты. Многие скажут, что это тоже неплохо. Да, возможно в условиях частного дома, но для энергообеспечения больших городов, соответственно, необходимо либо множество солнечных батарей, либо технология, которая сделает их эффективнее.

Экономическая сторона вопроса здесь тоже присутствует: любой бюджет сильно пострадает, если на него будет возложена задача перевести целый город (или всю страну) на солнечные батареи. Казалось бы, можно обязать жителей городов выплачивать некоторые суммы на переоснащение, но в таком случае недовольны будут они, ведь если бы люди готовы были бы пойти на такие траты, они уже давно сделали бы это сами: возможность купить солнечную батарею есть у каждого.

Касательно солнечной энергии есть и еще один парадокс: затраты на производство. Перевод энергии солнца в электричество напрямую — не самая эффективная вещь. До сих пор еще не найдено способа лучше, чем использовать солнечные лучи для нагревания воды, которая, превращаясь в пар, в свою очередь вращает динамо-машину. В таком случае энергопотеря минимальна. Человечество хочет использовать «экологичные» солнечные панели и солнечные станции, чтобы сохранить ресурсы на земле, однако для подобного проекта потребуется огромное количество тех же ресурсов, и «неэкологичной» энергии. Например, во Франции недавно была построена солнечная электростанция, площадью около двух квадратных километров. Стоимость постройки составила около 110 миллионов евро, не считая затрат на эксплуатацию. При всем этом следует учитывать, что срок службы подобных механизмов составляет около 25 лет.

Энергия ветра — также использовалась людьми еще с древности, самым простым примером можно назвать хождение под парусом и ветряные мельницы. Ветряки используются и сейчас, особенно они эффективны в областях с постоянными ветрами, например на побережье. Ученые постоянно выдвигают идеи, как модернизировать уже имеющиеся приспособления для преобразования ветряной энергии, одна из них — ветряки в виде парящих турбин. За счет постоянного вращения они могли бы «висеть» в воздухе на расстоянии нескольких сотен метров от земли, где ветер сильный и постоянный. Это помогло бы в электрификации сельской местности, где невозможно использование стандартных ветряков. К тому же такие парящие турбины могли бы быть оснащены интернет-модулями, с помощью которых осуществлялось бы обеспечение людей доступом в мировую паутину.

Бум на солнечную и ветряную энергетику постепенно проходит, и интерес исследователей привлекла другая природная энергия. Более перспективной считается использование приливов и отливов. Уже сейчас этим вопросом занимается около ста компаний по всему миру, существует и несколько проектов, доказавших эффективность данного способа добычи электричества. Преимущество перед солнечной энергетикой в том, что потери при переводе одной энергии в другую минимальны: приливная волна вращает огромную турбину, которая и вырабатывает электричество.

Проект «Устрица» — это идея установить на дне океана шарнирный клапан, который будет подавать воду на берег, тем самым вращая простую гидроэлектрическую турбину. Всего одна такая установка могла бы обеспечить электричеством небольшой микрорайон.

Уже сейчас в Австралии успешно применяют приливные волны: в городе Перте установлены опреснители, работающие на этом типе энергии. Их работа позволяет обеспечить пресной водой около полумиллиона человек. Природная энергетика и промышленность также могут сочетаться в этой отрасли производства энергии.

Использование энергии приливов и отливов несколько отличается от технологий, которые мы привыкли видеть в речных гидроэлектростанциях. Часто ГЭС наносят вред окружающей среде: затопляются прилегающие территории, разрушается экосистема, а вот станции, работающие на приливных волнах, в этом плане гораздо безопаснее.

Одним из самых фантастических проектов в нашем списке можно назвать использование энергии живых людей. Звучит ошеломляюще и даже несколько ужасающе, но не все так страшно. Ученые лелеют мысль о том, как использовать механическую энергию движения. Речь в этих проектах идет о микроэлектронике и нанотехнологиях с низким энергопотреблением. Пока звучит как утопия, реальных разработок нет, но идея весьма интересная и не покидает умы ученых. Согласитесь, весьма удобны будут устройства, которые подобно часам с автоматической подзаводкой, будут заряжаться от того, что по сенсору проводят пальцем, или от того, что планшет или телефон просто болтается в сумке при ходьбе. Не говоря уж об одежде, которая, наполненная разными микроустройствами, могла бы преобразовывать в электричество энергию движения человека.

В Беркли, в лаборатории Лоуренса, например, ученые попытались воплотить в жизнь идею о том, чтобы использовать вирусы для преобразования энергии давления в электричество. Небольшие механизмы, работающие от движения, так же имеются, однако пока что на поток подобная технология не поставлена. Да, с глобальным энергетическим кризисом подобным образом не справиться: скольким же людям придется «крутить педали», чтобы заставить работать целый завод? Но как одна из мер, применяемых в комплексе, теория вполне жизнеспособна.

Особенно подобные технологии будут эффективны в труднодоступных местах, на полярных станциях, в горах и тайге, среди путешественников и туристов, у которых не всегда есть возможность зарядить свой гаджет, а вот оставаться на связи важно, особенно если группа попала в критическую ситуацию. Как много всего можно было бы предотвратить, если бы у людей всегда было надежное устройство связи, не зависящее «от розетки».

Пожалуй, у каждого владельца авто, глядящего на индикатор количества бензина, приближающийся к нулю, возникала мысль о том, как отлично было бы, если бы машина работала на воде. Но сейчас ее атомы попали в поле зрения ученых как настоящие объекты энергетики. Дело в том, что в частицах водорода — самого распространенного газа во вселенной — содержится громадное количество энергии. Более того, двигатель сжигает этот газ практически без побочных продуктов, то есть, мы получаем очень экологичное топливо.

Единственный недостаток подобного источника энергии на данный момент — это относительно высокая стоимость таких экологичных машин, и, конечно, достаточно небольшое количество водородных заправок, однако во многих странах уже планируется их постройка. Например, в Германии уже стоит план об установке ста заправочных станций к 2017 году.

Превращение тепловой энергии в электричество — это и есть сущность геотермальной энергетики. В некоторых странах, где затруднено использование других отраслей, она используется довольно широко. Например, на Филлипинах 27 % всего электричества приходится именно на геотермальные станции, а в Исландии этот показатель составляет около 30 %. Сущность этого способа добычи энергии довольно проста, механизм схож с простой паровой машиной. До предполагаемого «озера» магмы необходимо пробурить скважину, через которую подается вода. При контакте с раскаленной магмой вода мгновенно превращается в пар. Он поднимается, где крутит механическую турбину, тем самым вырабатывая электричество.

Будущее геотермальной энергетики состоит в том, чтобы найти большие «хранилища» магмы. Например, в вышеупомянутой Исландии это удалось: раскаленная магма за долю секунды превратила всю закачанную воду в пар температурой около 450 градусов по Цельсию, что является абсолютным рекордом. Подобный пар высокого давления способен повысить эффективность геотермальной станции в несколько раз, это может стать толчком к развитию геотермальной энергетики во всем мире, особенно в областях, насыщенных вулканами и термальными источниками.

Атомная энергетика, в свое время, произвела настоящий фурор. Так было до тех пор, пока люди не осознали всю опасность этой отрасли энергетики. Аварии возможны, от подобных случаев никто не застрахован, но они весьма редки, а вот радиоактивные отходы появляются стабильно и до недавнего времени ученые не могли решить эту проблему. Дело в том, что стержни урана — традиционное «топливо» АЭС, может быть использовано только на 5 %. После выработки этой небольшой части, весь стержень отправляется на «свалку».

Ранее применялась технология, при которой стержни погружались в воду, которая замедляет нейтроны, поддерживая устойчивую реакцию. Сейчас вместо воды стали использовать жидкий натрий. Эта замена позволяет не только использовать весь объем урана, но и переработать десятки тысяч тонн радиоактивных отходов.

Избавить планету от отходов атомной энергетики важно, но в самой технологии есть одно «но». Уран относится к ресурсам, и его запасы на Земле конечны. В случае если всю планету перевести исключительно на энергию, получаемую от АЭС (к примеру, в США АЭС производят лишь 20% всего потребляемого электричества), запасы урана будут истощены довольно быстро, и это снова приведет человечество на порог энергетического кризиса, так что атомная энергетика, пусть и модернизированная, только временная мера.

Еще Генри Форд, создав свою «Модель Т», рассчитывал, что она уже будет работать на биотопливе. Однако в то время были открыты новые нефтяные месторождения, и нужда в альтернативных источниках энергии отпала еще на несколько десятков лет, но теперь снова возвращается.

За последние пятнадцать лет использование растительных видов топлива, таких как этанол и биодизель, возросло в несколько раз. Их используют как самостоятельные источники энергии, так и в качестве добавок к бензину. Некоторое время назад надежды возлагались на особую просяную культуру, получившую название «канола». Она совершенно непригодна в пищу ни для людей, ни для скота, однако обладает высокими показателями масличности. Из этого масла и стали производить «биодизель». Но эта культура займет слишком много места, если попытаться вырастить ее столько, чтобы обеспечить топливом хотя бы часть планеты.

Теперь ученые заговорили об использовании водорослей. Их масличность около 50 %, что позволит так же легко извлекать масло, а отходы можно превращать в удобрения, на основе которых будут выращиваться новые водоросли. Идея считается интересной, но свою жизнеспособность пока что не доказала: публикация об успешных экспериментах в этой области пока не опубликовано.

Будущая энергетика мира, по мнению современных ученых, невозможна без технологий термоядерного синтеза. Это, на данный момент, самая перспективная разработка, в которую уже вкладывают миллиарды долларов.

В атомных электростанциях используется энергия деления. Она опасна тем, что есть угроза возникновения неуправляемой реакции, которая уничтожит реактор, и приведет к выбросу огромного количества радиоактивных веществ: пожалуй, все помнят аварию на Чернобыльской АЭС.

В реакциях термоядерного синтеза, что следует из названия, используется энергия, выделяемая при слиянии атомов. В результате, в отличие от атомного деления, не образуется никаких радиоактивных отходов.

Главной проблемой является то, что в результате термоядерного синтеза образуется вещество, имеющее настолько высокую температуру, что может уничтожить весь реактор.

Эта энергетика будущего — реальность. И фантазии здесь неуместны, на данный момент на территории Франции уже началась постройка реактора. Несколько миллиардов долларов вложено в экспериментальный проект, который профинансирован многими странами, в число которых, помимо ЕС, входят Китай и Япония, США, Россия и другие. Изначально первые эксперименты планировалось запустить уже в 2016 году, однако расчеты показали, что бюджет слишком мал (вместо 5 миллиардов потребовалось 19), и запуск перенесли еще на 9 лет. Возможно, через несколько лет мы увидим, на что способна термоядерная энергетика.

Не только ученые, но и писатели-фантасты, дают множество идей для воплощения технологии будущего в энергетике, однако все сходятся на том, что пока что ни один из предложенных вариантов не может произвести полное обеспечение всех потребностей нашей цивилизации. К примеру, если все автомобили в США будут ездить на биотопливе, полями канолы придется засадить территорию, равную половине всей страны, без учета того, что земель, пригодных для земледелия в Штатах не так уж много.

Более того, пока что все способы производства альтернативной энергии — дороги. Пожалуй, каждый из простых городских жителей, согласен, что важно использовать экологически чистые, возобновляемые ресурсы, однако не в случае, когда им озвучивают стоимость такого перехода на данный момент. Ученым предстоит еще много работать в этой сфере. Новые открытия, новые материалы, новые идеи — все это поможет человечеству успешно справиться с назревающим ресурсным кризисом.

Прежде чем перейти на другие ресурсы, каждый должен осознать, что это действительно необходимо. Только при комплексном подходе удастся решить проблему энергопотребления.

Источники:
Источники энергии будущего
Несмотря на серьезные инвестиции в развитие альтернативных источников энергии, сейчас они удовлетворяют менее 1% глобальных нужд человечества в электричестве.
http://ichip.ru/istochniki-energii-buduschego.html
Новое в блогах
Новое в блогах Вы можете вступить в сообщество одним кликом по кнопке справа. 21 оценок, 1579 просмотров Обсудить (107) Виктор Давыдов # ответил на комментарий Рыжий Лис
http://maxpark.com/community/603/content/5369191
Энергетика будущего реальность и фантазии
Ученые предрекают, что уже через несколько десятков лет на планете закончатся традиционные ресурсы — уголь, нефть и газ. Как человечество справится с этой проблемой?
http://fb.ru/article/292903/energetika-buduschego-realnost-i-fantazii-alternativnyie-istochniki-energii

COMMENTS